摘要

针对目前基于韦伯特征的人脸识别算法没有充分利用方向信息且提取信息不充分的问题,提出一种多方向韦伯梯度直方图的人脸识别方法。在原始差分激励的基础上增加邻域像素梯度,提取改进的差分激励和韦伯梯度特征;将改进的差分激励与韦伯方向进行量化并分块提取二维直方图,进而转化为一维直方图特征,将韦伯梯度分块后沿韦伯方向累积提取直方图特征;连接两个特征形成组合特征,并利用最近邻分类器分类。通过在不同人脸库的实验可看出,所提算法具有良好的识别效果,且对光照、表情和部分遮挡变化有较好的稳健性。