基于支持向量机回归的猪肺疫发病率预测模型研究

作者:冯晓; 乔淑; 李国强; 钱少俊; 赵巧丽; 周萌; 胡峰; 郑国清
来源:河南农业科学, 2016, 45(01): 138-142.
DOI:10.15933/j.cnki.1004-3268.2016.01.031

摘要

为探明支持向量机回归(SVR)模型在动物疫病定量预测上的效果,以便为动物疫病防控决策提供依据,利用广西2007—2013年的猪肺疫月发病率时间序列,进行了SVR模型预测猪肺疫月发病率效果的研究。首先,以自相关函数法和Cao方法相结合,确定该时间序列的时间延迟为2,嵌入维数为6,并对其进行相空间重构;然后,依据主分量分析(PCA分布)方法判定该时间序列具有混沌特性,表明其在重构相空间中进行分析预测是可行的;最后,基于相空间重构结果构建SVR模型,分别采用网格搜索算法、遗传算法、粒子群算法对模型参数进行优化,并分析预测效果。结果表明,运用遗传算法优化SVR模型参数预测效果最优,平均绝对偏差(MAD)为0.043、均方误差(MSE)为0.003、平均绝对百分误差(MAPE)为0.202。可见,采用遗传算法优化的SVR模型对猪肺疫发病率的预测是可行有效的。

  • 单位
    河南省农业科学院农业经济与信息研究所

全文