超声图像中基于经验模态分解自动提取内-中膜厚度

作者:张晶; 杨平; 谢耀钦; 林宛华; 张元亭
来源:中国医学影像技术, 2012, 28(07): 1387-1391.
DOI:10.13929/j.1003-3289.2012.07.001

摘要

目的为改善传统人工标记测量血管内-中膜厚度(IMT)的准确性和稳定性,提出基于图像分割技术的经验模态分解(EMD)改进算法。方法采用EMD改进算法去噪,根据血管壁的特点,在其中的极值点插值步骤使用非均匀的二维B样条函数,在水平和垂直方向上控制网格的密度不同,分别满足不同的分辨精度和平滑程度要求,改进了原始的二维EMD算法;然后通过K均值方法从图像中分离出血管腔、血管壁和其他组织,使用数学形态学算法逐步得到最终的内-中膜组织分割结果。结果改进EMD算法取得了较好的重建和滤波效果,有效克服了超声图像的强噪声和低分辨力对图像分割的限制,整个算法分割比较准确,算法复杂度相对较小。结论改进EMD算法是在超声图像中自动提取内-中膜的较有潜力的方法,能有效去除超声噪声,同时保留条纹结构的细节和边缘信息,有望于其他强噪声环境下提取条纹结构。

全文