摘要
目的针对现有语义分割算法存在的因池化操作造成分辨率降低导致的分割结果变差、忽视特征图不同通道和位置特征的区别以及特征图融合时方法简单,没有考虑到不同感受视野特征区别等问题,设计了一种基于膨胀卷积和注意力机制的语义分割算法。方法主要包括两条路径:空间信息路径使用膨胀卷积,采用较小的下采样倍数以保持图像的分辨率,获得图像的细节信息;语义信息路径使用Res Net(residual network)采集特征以获得较大的感受视野,引入注意力机制模块为特征图的不同部分分配权重,使得精度损失降低。设计特征融合模块为两条路径获得的不同感受视野的特征图分配权重,并将其融合到一起,得到最后的分割结果。结果为证实结果的有效性,在Camvid和Cityscapes数据集上进行验证,使用平均交并比(mean intersection over union,MIoU)和精确度(precision)作为度量标准。结果显示,在Camvid数据集上,MIoU和精确度分别为69.47%和92.32%,比性能第2的模型分别提高了1.3%和3.09%。在Cityscapes数据集上,MIoU和精确度分别为78.48%和93.83%,比性能第2的模型分别提高了1.16%和3.60%。结论本文采用膨胀卷积和注意力机制模块,在保证感受视野并且提高分辨率的同时,弥补了下采样带来的精度损失,能够更好地指导模型学习,且提出的特征融合模块可以更好地融合不同感受视野的特征。
- 单位