摘要

针对传统蝙蝠算法全局搜索能力不足的问题,提出一种新型改进蝙蝠算法(IBA-FCS),通过设计脉冲变频策略、自适应局部搜索策略和变异机制,有效提升了算法的全局搜索能力。基于经典测试函数的寻优结果表明,与粒子群算法、传统蝙蝠算法和其他改进蝙蝠算法相比,IBA-FCS算法具有更好的寻优性能。针对农业无人机的航迹规划问题,结合山地果园飞行环境的三维地形数据,构建了农业无人机安全航迹规划模型,设计了多因素约束的飞行成本函数;同时,将航迹规划模型的求解空间由笛卡尔坐标系变换到圆柱坐标系,进一步提升IBA-FCS算法的寻优效率,从而获取更好的航迹规划方案。仿真实验结果表明,在具有不同数量障碍物的多个飞行任务中,IBA-FCS算法较传统蝙蝠算法的飞行成本函数适应度平均下降了20.3355%,并且基于圆柱坐标系的IBA-FCS算法求解的飞行成本函数适应度较基于笛卡尔坐标系的规划结果平均下降了4.6127%。实地场景实验结果表明,基于IBA-FCS算法的规划方案能够收敛于最优航迹,进一步验证了山地果园静态障碍环境下应用改进蝙蝠算法和圆柱坐标系进行农业无人机安全航迹规划的可行性和有效性。