摘要
提出了一种新的基于非凸泛函的图像分解模型.与经典的用Banach范数作为忠诚项的凸泛函模型相比,本文用残差图像的平方的积分除以它的梯度作为忠诚项.这种新的忠诚项对于纹理图像具有非常小的值,然而,对于几何图像有非常大的值,所以它很适合图像分解.应用梯度下降法求非凸泛函的极小值,这导致将一个新的非线性二阶偏微分方程演化到稳定的状态.与经典的总变差最小模型(TV)和四阶偏微分方程模型(OSV)相比,提出的模型可以更好地保持图像的边缘,所以纹理部分有更少的卡通信息.数值实验也证明了本文的模型比标准的TV和OSV模型具有更好的图像分解效果.
- 单位