摘要
在实际应用场景中所采集的人脸图像通常分辨率都很低,导致许多经典的人脸识别算法无法对低分辨率人脸进行准确识别.针对该问题,本文提出了一种部分卷积耦合的双通道网络,该网络中将高分辨率(High Resolution, HR)通道和低分辨率(Low Resolution, LR)通道中的卷积核进行部分耦合,使得LR通道能够从耦合的卷积核中学习到HR通道中的高分辨率参数,从而达到提高LR通道对LR样本的特征提取能力.为进一步提高样本分类的准确率,在双通道网络末端引入一个空间金字塔池化层(Spatial Pyramid Pooling, SPP),使用SPP层能够将HR样本与LR样本投影到一个共同的特征空间中.最后使用LFW人脸库对算法的有效性进行测试,实验结果表明,本文所提算法能够对LR人脸图像进行准确识别.
-
单位江西省数值模拟与仿真技术重点实验室; 赣南师范大学