摘要

目前,在普通手机解锁、面部锁定、面部扫描支付和安全防卫等领域,人脸识别信息技术都有着非常广泛的应用。传统的机器学习算法是基于人的脸部特征的,由于每类样本的不均衡性严重和场景效果的欠缺等因素,算法实现的效果常常不是很理想。本文将针对目前人脸识别技术领域的高语义特征及深度特征提取的缺陷,以及人工提取存在的误差,运用深度学习算法和类比中心等算法,提高人脸识别在特征提取领域的技术能力。利用卷积神经网络减少人工干预,提高特征提取的算法精度,从而提高损失函数的精确值。

全文