针对由于正负样本量不均衡导致使用传统支持向量机异常检测准确率较低的问题,在使用西门子S7协议的PLC网络环境中,采用单类支持向量机算法来训练异常检测模型。首先结合主成分分析法降低训练模型和检测异常数据的时间开销;然后在训练单类支持向量机模型时,采用人工蜂群算法优化模型的相关参数g和C。实验结果表明,采用单类支持向量机算法并结合主成分分析法的异常检测技术在确保准确率的同时,能够有效减少计算时间。