摘要
为了掌握城市干道交通运行规律,向交通管理部门制定相关交通需求管理政策提供理论依据,提出了一种基于组合模型的城市干道车辆出行群体辨识模型。基于青岛市胶州湾隧道过车数据,从出行强度、出行时间与出行习惯3个维度构建了出行特征指标体系以全面刻画车辆个体的出行行为。基于相关性分析剔除了冗余指标以避免对辨识研究的影响。针对混合属性出行特征指标数据,使用改进K-prototypes算法以有效地实现车辆出行群体划分,将其与GBDT算法相结合,建立了一种基于改进K-prototypes与GBDT的辨识模型,随机选取10 000个样本开展辨识研究。结果表明:研究道路存在5类车辆出行群体:高频通勤群体、低频通勤群体、营运群体、频次稳定群体与普通群体,对于这5类车辆出行群体,平均识别准确率为97.75%,最高识别准确率可达99.47%。
-
单位重庆交通大学; 交通运输学院