摘要

为更准确预测短期风电功率,提出了一种基于误差修正的NNA-ILSTM短期风电功率预测方法。首先,采用斯皮尔曼(Spearman)等级相关系数法对风电功率影响因素分析,选出相关性较高的参量;其次,对长短期记忆网络添加注意机制与修改损失函数以解决其对有效信息筛选不足的问题,利用神经网络算法(NNA)优化改进的长短期记忆网络(ILSTM)中的神经元数量和时间步长,提高其预测精度以及泛化能力,构建NNA-ILSTM预测模型;最后,分析预测误差与风电功率、风速之间相关性,构建误差修正模型,对NNA-ILSTM模型预测结果进行修正,得到风电功率预测的最终结果。实验结果表明,所提出的模型可以显著提高风电功率预测精度。