摘要
为动态监测洱海水体富营养污染物,利用遥感技术对反映水体富营养化的核心参数——叶绿素a质量浓度进行反演,建立适合当地当季的反演模型,对水体叶绿素a质量浓度进行宏观监测;通过洱海的秋季Sentinel-2影像和实测叶绿素a质量浓度数据,使用参数相关分析方法选取反演波段,建立BP神经网络模型和多元线性回归模型,随机选择7个样本点对2种模型进行交叉验证后,对洱海叶绿素a质量浓度进行反演。结果表明:Sentinel-2数据与叶绿素a质量浓度具有显著的相关关系(Pearson积矩相关系数的绝对值大于0.7, P <0.001),且分别在单波段、单波段比值和双波段比值中相关系数最大的波段及波段组合为B6、 B7/B6和(B6+B8)/(B7+B8a);隐含层神经元节点数为4的3层BP神经网络模型的均方根误差最小,决定系数最大,分别为0.002 8和0.925;2019年10月12日、11月9日,洱海叶绿素a质量浓度在空间上均呈北部高于南部的分布状态;BP神经网络模型的平均绝对误差百分比为21.36%、均方根误差为0.002 8、决定系数为0.925,多元线性回归模型的平均绝对误差百分比为27.90%、均方根误差为0.004 5、决定系数为0.788。总体而言,BP神经网络模型的叶绿素a质量浓度反演精度高于多元线性回归模型。本研究成果可为相关部门对洱海水质进行动态监测以及制定洱海水质保护措施提供参考。
- 单位