摘要
随着道路机动车数量的不断增多,交通事故已成为危害社会公共安全的主要因素之一,道路交通事故的预测也成为了研究热点。考虑到事故影响因素的错综复杂性和事故发生具有动态的时空变化性与数据稀疏性等问题,通过对多源数据的融合并按照时变和时不变数据进行特征提取,特别加入事故的文本描述特征提取上下文信息,同时采用负采样法平衡正负样本比例,最终提出了一种多特征组件组合训练的区域交通事故预测网络模型。在美国的3个具有不同事故稀疏性的城市数据集上进行了模型验证,实验结果表明该预测模型在各项评价指标上都优于对比的基础模型,各项指标提升约2%~3%,可以看出该模型在一定程度上提升了预测性能,同时通过多特征组件的不同组合实验结果说明各项因素对事故发生具有影响性。
-
单位上海大学; 通信与信息工程学院