摘要
大数据时代,在实际应用中所面临的数据体量大幅增长,由于对数据进行详细标记的难度很大而且成本极高,弱标签数据已经成为了大数据时代所面临的主要数据。比例标签数据作为弱标签数据中的一个重要类型,有着广阔的应用场景,但目前仍未受到广泛关注。已有的比例标签学习模型在处理大规模问题时,计算速度往往较慢。为了提高学习速度,本文提出Lap-Inv Cal模型,利用LapESVR进行比例标签学习。大量实验表明,该模型在保证较高精度的同时,大幅提升了训练速度,能够广泛应用于大规模比例标签学习问题中。
- 单位