摘要

早诊断早治疗对提升肺癌的存活率至关重要。肺结节是肺癌早期主要表现,但其异质性特征增加了计算机断层扫描对肺结节的检测难度,降低了分割结果的精确度。为提高肺结节分割结果的完整性和精确度,提出三维通道残差嵌套U网络(CR U2Net)。浅层特征同时包含病灶细节和噪声信息,提出浅层信息处理U结构平衡噪声信息的干扰;为加强不同层特征信息的交互,丰富特征表达和传递,提出通道残差结构,配合嵌套U结构实现特征信息的提取优化;考虑到浅层特征包含空间细节信息而深层特征具有语义抽象性,设计通道挤压U结构实现不同语义级别特征有效融合;将上述模块集成到UNet中构建出基于嵌套U结构的肺结节分割模型。提出的模型在Lung Image Database Consortium and Image Database Resource Initiative数据集中进行训练,达到了83.83%的Dice系数。优于多数现有肺结节分割方法且与UNet,UNet++以及PCAMNet网络相比领先了3.98%,1.96%和1.26%;针对网络结构进行有效性验证,结果表明各模块均发挥作用,在可接受参数量和计算量的情况下达到最优性能。