摘要
针对多无人机网络辅助灾区用户通信的场景,构建了一种基于信干噪比(Signal to Interference plus Noise Ratio,SINR)检测的概率感知模型,旨在最大化无人机服务区域的覆盖率,同时降低无人机额外能耗,并提升网络吞吐量。在该模型下,提出两种改进的麻雀搜索算法,分别为Logistic高斯麻雀搜索算法(Logistic Gaussian Sparrow Search Algorithm,LGSSA)和Logistic柯西麻雀搜索算法(Logistic Cauchy Sparrow Search Algorithm,LCSSA)。首先使用Logistic混沌序列产生初始种群,以丰富种群的多样性,提高算法的全局搜索能力;然后,在LGSSA和LCSSA中分别引入高斯变异和柯西变异因子,以改善局部最优解。仿真结果表明改进后的算法可以有效地优化无人机的空中部署,大幅度提升无人机网络的覆盖率。
- 单位