摘要
移动对象轨迹聚类在城市规划、公共空间设计、移动对象行为预测等领域具有重要的理论指导意义和实际应用价值。针对传统聚类算法(如k-means,DBSCAN)在移动对象轨迹方面聚类效果不佳的问题,提出一种新的轨迹聚类算法iBTC。该算法首先对轨迹进行分段,根据最小描述长度原理,将轨迹分段问题转换为求无向图的最短路径问题,使用Dijkstra算法求得轨迹的最佳分段;然后将轨迹聚类问题转换为一种特殊的异常检测问题,并基于独立森林的思想,使用细分-合并过程对轨迹数据进行聚类;最后在模拟数据集和监控视频记录的行人轨迹公开数据集上进行实验,结果表明该算法能够取得较好的聚类效果。
- 单位