摘要
山坡地区是落石频发的区域,凭人力难以及时发现灾害的发生;为及时检测到落石的发生并做出应对措施,提出一种基于改进YOLOX的落石检测方法,自动检测并报告落石的发生情况;通过自制落石数据集训练YOLOX网络,优化空间金字塔池化结构,获取更多语义信息,并引入ECA-Net(Efficient Channel Attention Module,高效通道注意力模块),提高特征的提取能力和特征间的信息传播,同时改进损失函数并使用数据增强,提高网络训练效果;实验结果表明,改进YOLOX算法的mAP@0.5为92.50%,每秒检测帧数为62.6,相较于YOLOX算法,mAP@0.5提高3.45%,每秒检测帧数上涨0.3;与原算法相比,在不损失性能的情况下,精度有较大的提升,同时满足图片与视频数据的实时检测要求。
- 单位