为使樱桃缺陷检测与识别系统满足实时性的要求,提出以卷积神经网络模型为基础,使用SDSoC开发平台,完成FPGA对樱桃缺陷进行快速检测与识别系统的设计。通过优化数据传输,复用网络模型中通用矩阵乘法函数(GEMM)和对卷积操作进行并行化设计,实现PL端硬件加速。利用SDSoC平台,在PS端使用高级语言映射卷积神经网络模型,在实现所需性能的同时大量节省了开发时间。结果表明,与纯软件方式相比,基于Zynq7020硬件开发平台,速度提高了2.19倍以上,与CPU平台相当。