摘要
针对作者已经提出的双因子高斯过程隐变量模型(Two-factorGaussianprocesslatentvariablemodel,TF-GPLVM)用于语音转换时未考虑语音的动态特征,并且模型训练时需要估计的参数较多的问题,提出引入隐马尔科夫模型(Hidden Markov model,HMM)对语音动态特征进行建模,并利用HMM隐状态对各帧语音进行关于语义内容的概率软分类,建立了分离精度更高、运算负荷较小的双因子高斯过程动态模型(Two-factor Gaussian process dynamic model,TF-GPDM).基于此模型,设计了一种全新的基于说话人特征替换的语音声道谱转换方案.主、客观实验结果表明,无论是与传统的统计映射和频率弯折转换方法相比,还是与双因子高斯过程隐变量模型方法相比,本文方法都获得了语音质量和转换相似度的提升,以及两项性能的更佳平衡.
-
单位解放军理工大学