多传感器数据融合的复杂人体活动识别

作者:宋欣瑞; 张宪琦; 张展*; 陈新昊; 刘宏伟
来源:清华大学学报, 2020, 60(10): 814-821.
DOI:10.16511/j.cnki.qhdxxb.2020.22.003

摘要

基于传感器的人体活动识别被广泛应用到各个领域,但利用多种异构传感器识别日常的复杂人体活动,仍然存在很多问题。对多个异构传感器数据进行数据融合时,存在兼容性问题,导致对并发复杂活动识别准确率较低。该文提出基于多传感器决策级数据融合的多任务深度学习模型。该模型利用深度学习自动地从每个传感器原始数据中进行特征提取。利用多任务学习的联合训练方法将并发复杂活动分为多个子任务,多个子任务共享网络结构,相互促进学习,提高模型的泛化性能。实验表明:该模型对周期性活动的识别准确率可达到94.6%,非周期性活动可达到93.4%,并发复杂活动可达到92.8%。该模型比3个基线模型的识别准确率平均高出8%。

全文