摘要

考虑由无限维柱形噪声驱动的随机二维g-Navier-Stokes方程的均值动力学,且该方程具有非线性扩散项和依赖于时间的外力项.当非线性扩散项是Lipschitz连续的并且外力项是局部可积时,可得到一个均值随机动力系统(RDS).若外力项是缓增的,均值RDS在偶幂的Bochner空间中有唯一的弱拉回均值吸引子.此外,通过使用Bochner空间相对于时间的单调性,证明若外力项是后向缓增的,则弱拉回均值吸引子的后向并集在渐进Bochner空间中是定义明确且弱紧的.最后,当外力项为零、周期或递增时分别给出后向弱紧弱吸引子的三个例子.