摘要
使用支持向量机(SVM)方法对矿井通风系统进行故障诊断,存在惩罚系数(c)和核函数系数(g),通过人工方法选取效率低、难以达到较高准确率并且出现过拟合的问题。为了提高矿井通风故障诊断的效率、准确率,同时避免过拟合现象,提出了一种改进遗传算法(GA),在故障诊断过程中对支持向量机的c,g参数进行优化。经过多组试验分析,研究结果表明:用遗传算法优化的SVM矿井通风故障诊断系统相比于未优化系统的故障诊断准确率有所提升,参数未优化前故障诊断的准确率为60%,优化后的准确率为97. 894 7%,并且优化参数经过大数据样本验证,未出现过拟合现象,证明了本文提出方法的有效性。
- 单位