摘要

针对基于邻域粗糙集属性重要度约简算法在某些决策表中约简正确率下降等问题,结合基于等价关系下的分辨矩阵知识,定义一种邻域决策系统下的分辨矩阵,邻域分辨矩阵由能够分辨不同邻域对象的条件属性子集组成。根据条件属性在邻域分辨矩阵中的占比提出一种属性重要度的度量方法,以新的重要度作为启发性因子,设计一种邻域决策系统下属性重要度启发性约简算法。该算法以核属性集作为初始集合,依次选择重要度大的属性加入到核集,直至找到最小属性约简时,算法终止。实例分析和UCI数据集试验结果表明,与基于属性依赖度的约简算法相比,该算法能够更有效地找到最小属性约简集,并且可以有效减少计算工作量,证明了算法的有效性和可实用性。