针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点.