摘要
结合机器人的工作原理以及卷积神经网络(CNN)在图像分类中的应用,提出了一种基于卷积神经网络的壁面障碍物检测识别算法.首先,以壁面障碍物准确识别为目标,构建壁面障碍物图像库;然后,通过对VGG-16网络简化后进行优化,得到适合壁面障碍物准确识别的卷积神经网络模型.在此基础上,设计该网络由输入层、4层卷积层、2层池化层、1层全连接层以及输出层组成,进一步利用3×3卷积核对训练样本进行卷积操作,并将所获取的特征图以2×2领域进行池化操作.重复上述操作后,通过学习获取并确定网络模型参数,得到最佳网络模型.实验结果表明,障碍物的识别准确率可达99.0%,具有良好的识别能力.
-
单位机电工程学院; 兰州理工大学