摘要

在社交网络中,Spammer未经接收者允许,大量地发送对接收者无用的广告信息,严重地威胁正常用户的信息安全与社交网站的信用体系。针对现有社交网络Spammer检测方法的提取浅层特征与计算复杂度高的问题,提出了一种基于图卷积网络(GCN)的社交网络Spammer检测技术。该方法基于网络结构信息,通过引入网络表示学习算法提取网络局部结构特征,结合重正则化技术条件下的GCN算法获取网络全局结构特征去检测Spammer。在Tagged.com社交网络数据上进行了实验,结果表明,所提方法具有较高的准确率与效率。