摘要

利用凸体的均质积分给出了Rn中的超平面偶与n维正方体相交时,其交集也与此正方体相交的几何概率。此概率序列不仅与正方体棱长无关,而且关于维数n单调递增,并收敛于常数π/4。这一系列结果与n维球体时的情形类似。在此基础上,利用初等对称函数以及积分几何理论进一步讨论了棱长不等的n维长方体的情形,并给出了相应的几何概率的最大值。由于此几何概率序列与长方体的棱长有关,因此不再关于维数n单调递增,也不再具有收敛性,然而,当棱长满足一定条件时依然会收敛到常数π/4。

  • 单位
    福建江夏学院