摘要
花椰菜在生长过程中容易感染灰霉病而导致产量减少,现有的分选方法难以在早期检测到感染灰霉病的花椰菜。应用近红外光谱技术实现花椰菜灰霉病的早期判别检测,对花椰菜病害防治意义重大。以接种灰霉菌孢的花椰菜为研究对象,首先,采集对照组和处理组花椰菜的近红外光谱曲线并进行去噪处理,获取4个批次共608个样本(接菌0.5, 1, 2和3 d每日的健康和染病花椰菜各76朵)在500~2 400 nm波段范围内的光谱曲线。同时测量花椰菜样本的多酚氧化酶(polyphenol oxidase, PPO)、过氧化物酶(peroxidase, POD)与丙二醛(malondialdehyde, MDA)的活性值,采用单因素方差分析(analysis of variance,ANOVA)对单一批次的健康和染病花椰菜品质指标进行统计分析。然后,采用K-S算法(Kennard-Stone)将单天的样本划分为校正集(114个样本)与预测集(38个样本),使用竞争性自适应重加权算法(competitive adaptive reweighted sampling, CARS)进行4个批次的花椰菜样本的光谱数据特征波段提取,并基于偏最小二乘回归(partial least square regression, PLSR)算法建立单一批次判别模型和组合批次判别模型。结果表明:在接菌早期,用肉眼无法实现染病花椰菜样本的识别,仅在染病第3 d后部分染病样本病害特征明显时可实现判别。测定对照组和处理组花椰菜品质指标后发现:染病2 d后,对照组和染病组样本的所有品质指标均存在显著性差异(p<0.05),但在第0.5 d时各项指标均无显著性差异,仅在第1 d时MDA值出现显著性差异,说明从品质指标上无法判别早期染病花椰菜。建立单一批次下的PLSR判别模型后表明:第一批次样本(0.5 d)所建模型的判别准确率达到了94.74%,预测集均方根误差为0.835,第二至第四批次(接菌1~3 d)所建判别模型准确率达到100%,表明PLSR模型可以实现单一批次下早期染病花椰菜样本的检测;PLSR组合判别模型在第0.5 d和第1 d判别准确率分别达到了92.11%与97.37%,可以判别出大部分的患病花椰菜,但是PLSR组合批次建模效果低于PLSR单一批次建模。结果表明,基于近红外光谱技术,通过CARS算法提取特征波段结合PLSR模型的建立,可以在早期检测出感染灰霉病的花椰菜,为花椰菜灰霉病的早期检测提供参考,具有一定的实际应用价值。
- 单位