摘要

特征空间的高维特点限制了分类算法的选择,影响了分类器的设计和准确度,降低了分类器的泛化能力,从而出现分类器过拟合的现象,因此需要进行特征选择以避免维数灾难。首先简单分析了几种经典特征选择方法,总结了它们的不足;然后给出了一个优化的文档频方法,并用它过滤掉一些词条以降低文本矩阵的稀疏性;最后应用模式聚合(PA)理论建立文本集的向量空间模型,从分类贡献的角度强化词条的作用,消减原词条矩阵中包含的冗余模式,从而有效地降低了向量空间的维数,提高了文本分类的精度和速度。实验结果表明此种综合性特征选择方法效果良好。