摘要
多模态对话情绪识别是一项根据对话中话语的文本、语音、图像模态预测其情绪类别的任务。针对现有研究主要关注话语上下文的多模态特征提取和融合,而没有充分考虑每个说话人情绪特征利用的问题,提出一种基于一致性图卷积网络的多模态对话情绪识别模型。该模型首先构建了多模态特征学习和融合的图卷积网络,获得每条话语的上下文特征;在此基础上,以说话人在完整对话中的平均特征为一致性约束,使模型学习到更合理的话语特征,从而提高预测情绪类别的性能。在两个基准数据集IEMOCAP和MELD上与其他基线模型进行了比较,结果表明所提模型优于其他模型。此外,还通过消融实验验证了一致性约束和模型其他组成部分的有效性。
-
单位昆明理工大学; 自动化学院