摘要
针对煤矸石路堤沉降预测问题,基于BP神经网络非线性映射能力和学习能力,提出学习率可变的动量BP神经网络以预测常安高速公路煤矸石路堤沉降。利用实测沉降资料建立路堤沉降模型,该模型克服了动量BP神经网络收敛速度慢、训练时间长的缺点。同时采用postreg函数对网络训练结果进行了检验。结果表明:该模型有较高的预测精度,预测误差较小,可用于煤矸石路堤沉降预测。
-
单位土木工程学院; 湖南省交通规划勘察设计院有限公司; 中南林业科技大学