摘要
预测负荷的精准度是衡量电力系统负荷预测模型性能的一个重要指标。电力负荷序列变化规律多样,具有周期性、非平稳性、随机性等特点,因此采用变分模态分解方法分解负荷序列,得出其不同特性的模态函数分量,进而降低原始数据的复杂程度和模态混叠现象以提高负荷预测的精度,将其代入灰狼优化的支持向量回归机模型,得到最终日负荷预测值。使用VMD-GWO-SVR预测方法在Matlab R2014b软件上对2014年南美某地区日负荷数据进行仿真验证,结果表明该方法使得日负荷预测精度可达99.15%,验证了该预测模型的有效性和高精度。
- 单位