在互联网母婴领域中,由于育婴网络自身的特殊性,推荐算法不仅与用户以及项目的信息有关还与儿童的数据信息有关,而传统的用户相似度计算并未考虑儿童的数据信息.针对此问题,重新定义用户相似度计算方法,将儿童的数据信息通过加权融合的方法融入用户相似度计算中,并提出一种融合儿童成长信息的协同过滤算法,实验结果表明,该算法的准确率与召回率都优于传统算法,推荐系统的推荐质量也有所提高.