摘要
针对传统短期负荷预测方法误差大的问题,提出一种基于改进型自适应白噪声的完全集合经验模态分解(ICEEMDAN)和改进的麻雀搜索算法(ISSA)优化长短期记忆网络(LSTM)的短期负荷预测方法。首先,针对负荷序列波动性大,导致直接使用负荷数据进行预测难以获取内在特征的问题,运用ICEEMDAN方法将原始负荷序列进行分解,得到时间尺度各异的IMF分量;其次,针对LSTM模型参数较难选取的问题,采用ISSA对LSTM的超参数寻优,利用Fuch混沌映射、反向学习策略和自适应t变异改进麻雀算法,减小SSA陷入局部最优的风险,提高麻雀算法的寻优能力和收敛速度;最后,依据分解得到的各组数据特征,建立ISSA-LSTM模型并进行预测,再将各组分量的预测值进行叠加,得到最终的电力负荷预测结果。仿真结果表明:与其他预测模型相比,ICEEMDAN-ISSALSTM模型具有更高的短期电力负荷预测精度,其预测平均绝对误差为9.39 kW,均方根误差为11.47 kW,平均绝对百分比误差为0.19%。
-
单位国网新疆电力公司; 新疆大学