摘要

为解决因外来海洋生物领域实体复杂且实体间存在嵌套导致命名实体识别效果较差等问题,提出基于融合注意力机制的卷积神经网络(CNN)-双向门控循环单元网络(BiGRU)-条件随机场(CRF)网络模型进行外来海洋生物命名实体识别,并构造词向量、词性特征向量等特征作为网络模型的联合输入,以提升网络模型识别效果。结果表明:使用融合多特征向量的CNN-BiGRU-CRF网络模型对外来海洋生物名称实体、时间实体、地名实体3类实体上的命名实体识别结果平均准确率达到了90.62%,平均召回率达到了89.50%,平均F1值达到了90.05%,较传统命名实体识别方法均有较大提高。研究表明,本研究中提出的网络模型可以充分提取文本特征,解决了文本的长距离依赖问题,对外来海洋生物领域的命名实体识别具有较好的识别效果。