摘要

实现家谱文本信息的自动抽取是家谱资源深度开发利用的关键。目前深度学习在家谱文本信息抽取方面取得了良好的效果,但是对标注数据的依赖始终是其发展瓶颈之一。本文面向家谱的世系小传,研究基于小规模标注数据进行家谱人物和关系的抽取方法。具体来说:基于Bootstrapping的思想,以少量的标注数据作为初始种子集,使用深度学习BiLSTM-CRF模型为待标注样本自动预测标签序列,并筛选高置信分数的样本加入标注集中,从而迭代地扩展标注集,最后训练得到的模型用于命名实体识别和关系抽取。基于真实数据集的实验表明,使用Bootstrapping改进的BiLSTM-CRF模型能够基于小规模标注数据实现家谱信息抽取,使基于深度学习的家谱信息抽取更加高效。在种子集规模为250条时取得的预测效果与训练集规模为1800条的BiLSTM-CRF模型的预测效果接近。

  • 单位
    中国人民大学

全文