摘要

当前网络流量数据呈现出高维、多态、海量的特点,这对入侵检测是一个新挑战.针对传统入侵检测模型中检测效率低、缺乏轻量化考虑等局限性,提出了一种融合GRU和CNN的轻量级网络入侵检测模型.首先使用极度随机树删除数据集中的冗余特征;其次使用GRU进行特征提取.考虑到数据中的长短期依赖关系,将所有隐藏层输出作为序列特征信息进行下一步处理;再通过带有逆残差、深度可分离卷积、空洞卷积等结构的轻量化CNN模型进行空间特征提取;为了加速模型收敛加入了通道注意力机制.最后在CIC-IDS2017数据集上的实验表明,该方法具有优秀的检测性能,同时也具有模型参数量少、模型体积小、训练时间短、检测时间短等优点,适用于网络流量的入侵检测工作.

全文