摘要

为解决风力机轴承退化指标提取困难与剩余寿命预测精度低的问题,提出一种基于主成分分析(PCA)和无迹粒子滤波(UPF)的预测方法。该方法主要包括退化指标提取和寿命预测2个步骤。在退化指标提取部分,通过PCA对轴承实时振动信号的多域原始特征集进行融合,得到能够反映轴承衰退趋势的退化指标。在剩余寿命预测部分,通过对轴承历史数据的拟合分析构建退化模型,再利用UPF算法对模型参数进行更新,实现对轴承退化状态的跟踪和预测。使用实际风力机轴承监测数据对所提方法进行验证,结果表明该方法相比于传统的粒子滤波PF方法,能有效降低粒子退化程度,从而显著提高轴承剩余寿命预测精度,为大型风电机组的健康管理和可靠性评估提供参考依据。

全文