基于深度学习与多尺度特征融合的烤烟烟叶分级方法

作者:鲁梦瑶; 周强; 姜舒文; 王聪; 陈栋; 陈天恩*
来源:中国农机化学报, 2022, 43(01): 158-166.
DOI:10.13733/j.jcam.issn.2095-5553.2022.01.023

摘要

为实现烤烟等级的快速准确识别,降低人工分级中主观因素对分级结果的影响,提高烟叶分级的准确性和一致性,提出一种基于烤烟RGB图像和深度学习的多尺度特征融合的烟叶图像等级分类方法,采用ResNet50提取烟叶图像特征,并引入基于注意力机制的SE模块(压缩激发模块),增强不同通道特征的重要程度;同时,采用FPN(特征金字塔网络)对提取的由浅及深不同层级的烟叶特征进行融合,以实现烟叶多尺度特征的表达。采集皖南地区6 068个烤烟的正面和背面图像用于建模和分析。结果表明,提出的烟叶分级方法的分级正确率比经典CNN(卷积神经网络)高出5.21%,分级模型在新批次7个等级烟叶上的分级正确率为80.14%,相邻等级的分级正确率为91.50%。因此,采用RGB图像结合深度学习技术可实现烤烟烟叶等级的良好识别,可为烤烟烟叶收购等级评价提供一种新方法。