摘要
为实现烤烟等级的快速准确识别,降低人工分级中主观因素对分级结果的影响,提高烟叶分级的准确性和一致性,提出一种基于烤烟RGB图像和深度学习的多尺度特征融合的烟叶图像等级分类方法,采用ResNet50提取烟叶图像特征,并引入基于注意力机制的SE模块(压缩激发模块),增强不同通道特征的重要程度;同时,采用FPN(特征金字塔网络)对提取的由浅及深不同层级的烟叶特征进行融合,以实现烟叶多尺度特征的表达。采集皖南地区6 068个烤烟的正面和背面图像用于建模和分析。结果表明,提出的烟叶分级方法的分级正确率比经典CNN(卷积神经网络)高出5.21%,分级模型在新批次7个等级烟叶上的分级正确率为80.14%,相邻等级的分级正确率为91.50%。因此,采用RGB图像结合深度学习技术可实现烤烟烟叶等级的良好识别,可为烤烟烟叶收购等级评价提供一种新方法。
-
单位国家农业信息化工程技术研究中心; 安徽皖南烟叶有限责任公司