摘要

针对航班延误衍生的航班延误波及问题,该文提出一种基于CBAM-CondenseNet的航班延误波及预测模型。首先,通过分析航班延误在航空网络内产生的延误波及现象,确定会受前序延误航班影响的航班链;其次,对选定的航班链数据进行清洗,将航班信息与机场信息进行数据融合;最后,提出改进的CBAM-CondenseNet算法对融合后的数据进行特征提取,构建Softmax分类器对首班离港航班延误波及的后续离港航班延误等级进行预测。该文提出的CBAM-CondenseNet算法融合了CondenseNet和CBAM的优势,采用通道和空间注意力机制来加强网络结构深层信息的传递。实验结果表明,算法改进后有效提升网络性能,预测准确率可达97.55%。