摘要

针对仓储环境中移动机器人的路径规划问题,提出了一种改进的黑猩猩优化算法。算法首先通过邻域搜索初始化种群,提高种群质量,然后利用余弦收敛因子改进自适应收敛过程,提高种群多样性和全局搜索能力,最后为避免出现后期因搜索混乱导致的局部最优的问题,引入距离启发因子对种群进行分类加权,促使种群朝向最优个体靠近,进一步提高算法的局部寻优和勘探能力。运用旅行商问题数据(TSPLIB)标准算例库将改进的算法与标准黑猩猩优化算法等几种智能算法进行对比,结果表明改进的算法在鲁棒性、收敛精度、寻优速度等方面都有明显优势,其次将改进算法应用到智能仓储仿真环境中,实验结果表明改进的算法具有良好的适用性,能够有效优化仓储移动机器人的路径,提高作业效率。

全文