摘要

在代理模型序列采样框架下,针对现有研究中的不足之处,通过引入k-fold交叉验证计算样本的预测误差,并结合泰森多边形法和最大距离最小化准则,发展了一种适用于任意代理模型的k-fold CV-Voronoi自适应序列采样方法。相较于传统序列采样方法,本文方法具有计算简单和自适应性强等显著优势。通过数值算例和工程算例对比分析发现所提序列采样方法具有较高的近似精度和计算效率,此外,进一步讨论了k-fold交叉验证中k的不同取值对于代理模型精度的影响,总结出k的最优取值范围以供参考。