一种自监督宫颈细胞分类方法

作者:盖晋平; 秦健; **军*; 彭晨辉
来源:哈尔滨理工大学学报, 2022, 27(03): 45-51.
DOI:10.15938/j.jhust.2022.03.006

摘要

深度学习的发展有效地提升了宫颈细胞分类的准确率。深度神经网络的训练需要大量的标注数据。而宫颈细胞图像的标注需要专业的医生,且标注工作量大,成本高。这使得宫颈细胞图像标注数量不足,从而限制了宫颈细胞分类性能的进一步提高。针对以上问题,提出了一种有效利用临床中大量未标注数据的宫颈细胞分类方法。该方法首先采用SimCLR训练一个改进的ResNet网络对细胞进行特征提取。然后用全连接神经网络根据提取的特征信息进行分类预测。在宫颈细胞分类的实验中,该方法使用512张标注图像得到87.85%的准确率和77.10%的精确度,相比于对比方法更加优越。

全文