摘要

针对相同构造的卷积神经网络输入同样的数据集也会提取到不同特征的情况,为利用该差异挖掘图像的深层特征,提出一种双路卷积神经网络模型的图像分类算法。在优化池化组合的基础上,在另一子网络中引入自适应池化丰富差异特征,提高特征表达层次;根据互补测量函数测量子网络间的特征差异的互补性,以此优化损失函数反向传播微调模型权重,提高图像分类的精准度。在MNIST和CIFAR-10图像集上的实验结果表明,基于自适应池化的双路卷积神经网络的分类能力优于现有的深度卷积神经网络。

全文