摘要

针对传统作物行识别方法在相邻图像间的识别结果偏差较大,作物行的定位精度和稳定性低等问题,该研究提出一种基于双目视觉和自适应Kalman滤波技术的作物行识别与跟踪方法。对于作物行识别,首先建立图像预处理算法,基于改进的超绿-超红模型和最大类间方差法分割植被灰度特征;建立作物行特征提取算法,基于特征点检测技术和双目视差测距方法计算植被角点特征的三维坐标,根据三维阈值提取作物行特征点,进而建立作物行中心线检测算法,建立基于主成分分析的直线拟合模型,根据作物行特征点的频数统计规律检测作物行冠层中心线。对于作物行跟踪,建立跟踪目标规划模型,提取位于图像中央区域的作物行作为跟踪目标;建立目标状态方程,基于自适应Kalman滤波技术构建作物行中心线跟踪模型。以棉花图像开展试验研究,图像数据包括阴影、杂草、地头等田间场景。试验结果表明,该研究方法的作物行识别准确度、精度和速度均较高,识别正确率约为92.36%,平均航向偏差为0.31°、标准差为2.55°,平均识别速度约80.25 ms/帧;经目标跟踪后,航向角和横向位置估计的标准差分别为2.62°和0.043m、较无跟踪状态分别减小22.94%和10.42%,作物行中心线的方位估计精度进一步提高。研究成果可为导航系统提供连续、稳定的作物行导引参数。