摘要
网约车需求预测是一个典型的时间序列预测任务,准确的网约车需求预测能够辅助网约车平台合理地派单和规划路径,从而降低网约车的空驶率,具有重要的研究意义。文章利用长短时记忆模型(LSTM)及门控循环单元(GRU)进行网约车需求预测,对比了同一地区休息日和工作日,一周和一个月内的网约车需求及其变化,构建基于LSTM和GRU的需求预测模型,使用历史数据对未来需求进行预测,使用Geohash代码对西安市进行区域划分,对数据和划分的网格进行匹配得到汇总数据,采用线性模型进行对照试验,结果表明,LSTM和GRU在网约车需求预测中的表现优于线性模型,二者相比LSTM预测精度更高。
- 单位