摘要

以焊缝高宽比和深宽比作为优化目标,结合径向基函数神经网络和带精英策略的非支配排序的多目标遗传算法NSGA-Ⅱ,实现了多目标优化.建立了以焊接电压、送丝速度、焊接速度作为自变量,预测焊缝熔宽、余高和熔深的5种模型,即误差反向传播神经网络、遗传算法优化的误差反向传播神经网络、克里金插值法、径向基函数神经网络和二阶多项式回归模型.对比分析表明,径向基函数神经网络具有较高的预测精度和稳定性,最为合适.最后,利用NSGA-Ⅱ算法实现了以盖面焊和填充焊为应用场景的工艺参数多目标优化,试验证明了该优化方法的有效性.