摘要

块Kaczmarz方法是求解大规模线性方程组的一种迭代算法.在每次迭代时,会将当前迭代点正交投影到约束子集的解空间.文章基于块Kaczmarz方法的原理,提出了高斯混合模型的随机块Kaczmarz方法(GMM-RBK(k)).其中块的划分是通过高斯混合模型进行划分的.为了避免伪逆的计算或者最小二乘问题的求解,提出了高斯混合模型的随机平均块Kaczmarz方法(GMM-RABK(k)).证明了当线性方程组是相容时,这两种算法是收敛的,并给出相应的收敛率公式.在最后的数值实验中也证实了GMM-RBK(k)方法和GMM-RABK(k)方法的有效性,且无伪逆GMM-RABK(k)方法要优于GMM-RBK(k)方法.