摘要
随着人工智能技术的迅速发展与广泛应用,智能化勘查方法正成为刑事科学技术领域新的研究热点,而实现现场勘查照片自动识别与分类是智能化勘查的重要研究内容。面向公安机关实战应用需求,提出了一种基于卷积神经网络的现场勘查照片自动分类算法。基于真实案件照片,建立了现场勘查照片数据集,包含现场勘查照片13164张,负类照片4008张。根据现场勘查照片数据特性,设计了现场勘查照片分类网络(CriSNet),通过对卷积层增加归一化处理以及改进bottleneck模块,实现对现场勘查照片的精确分类。实验结果表明:CriSNet模型的分类精度优于基准网络1个百分点,具有较好的鲁棒性,同时在分辨率低、品质较差的情况下,仍能保持较好的分类性能。
-
单位上海市刑事科学技术研究院; 中国人民公安大学